References

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of memory and language, 59(4), 390-412.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology & evolution, 24(3), 127-135.

Caldara, R., & Miellet, S. (2011). iMap: A Novel Method for Statistical Fixation Mapping of Eye Movement data, Behavior Research Methods, 43(3), 864-78

Christensen, R. (2011). Plane Answers to Complex Questions: The Theory of Linear Models. Springer.

McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2011). Generalized, Linear, and Mixed Models. Wiley.

Miellet, S., Lao, J., & Caldara, R. (2014). An appropriate use of iMap produces correct statistical results: a reply to McManus (2013) iMAP and iMAP2 produce erroneous statistical maps of eye-movement differences. Perception, 43, 451-457.

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Publications.

Smith S.M., & Nichols, T.E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83-98

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381-397.

results matching ""

    No results matching ""